
CROSSTALK The Journal of Defense Software Engineering 13July 1998

Software development is a trou-
bling technology. Software is
highly labor-intensive, and as a

result, large software projects are among
the most expensive undertakings of the
20th century. Large software systems
cost far more to build and take much
longer to construct than the office build-
ings occupied by the companies that
have commissioned the software. Ex-
tremely large software systems in the
100,000 function point size range can
cost more than building a domed foot-
ball stadium, a 50-story skyscraper, or a
70,000-ton cruise ship.

Consider what the phrase “large
systems” means in the context of six
different size plateaus separated by an
order of magnitude for each plateau. Size
is expressed in terms of function points,
a widely used synthetic metric based on
five external attibutes of software appli-
cations: inputs, outputs, inquiries, logi-
cal files, and interfaces. The average
number of C statements found within
the typical function point is provided as
a point of reference.

One Function Point (125 C
Statements)
There are few software applications of
this size except small enhancements to
larger applications or minor personal
applications. The schedules for such
small programs are usually only from a
day to perhaps a week.

10 Function Points (1,250 C
Statements)
This is the typical size of end-user appli-
cations and also a tremendously frequent
size plateau for enhancements to existing
software. Development schedules are
usually less than one month.

100 Function Points (12,500 C
Statements)
This size is heavily populated with en-
hancements to existing applications. It is
also the practical upper limit of end-user
applications. There are few stand-alone
applications of this size in 1998, but 10
years ago there were a number of DOS
applications in this size range, such as
early BASIC interpreters. However,
there are many features of larger applica-
tions that approximate this size. Devel-
opment schedules are usually less than
six months. Individual programmers can
handle applications of this size, although
technical writers and other specialists
may be involved, too.

1,000 Function Points
(125,000 C Statements)
This size range exceeds the capabilities of
end-user development. This is a fairly
common entry-level size range for many
commercial and internal Windows soft-
ware applications. It is also a common
size range for in-house client-server
applications. Schedules for software
projects of this size are usually longer
than 12 months. In this size range, the
volume of specifications and user docu-

mentation becomes a significant con-
tributor to software costs.

Quality control also is a major re-
quirement at this size range. Applica-
tions of this size range require develop-
ment teams of up to 10 staff members,
since individual programmers cannot
usually handle the volume of code and
other deliverables. Specialties such as
quality assurance, technical writing, and
database administration are often repre-
sented on the development team. With
team development, issues of system
segmentation and interfaces among
components become troublesome.

10,000 Function Points
(1,250,000 C Statements)
Applications of this size are usually
termed “systems” because they are far
too large for individual programs. This
size range is often troubled by cost and
schedule overruns and by outright can-
cellations. Development teams of 100 or
so are common, so communication and
interface problems are endemic.

Software schedules in this size pla-
teau run from three to more than five
years, although the initial planning for
applications of this size range tends to
naively assume schedules of 18 months
or less. The volume of paperwork in
terms of plans, specifications, and user
manuals is so large that production of
documents is often more expensive than
the source code. Because defect levels
rise with application size, formal quality
control including pre-test inspections are

Project Management Tools
and Software Failures and Successes

Capers Jones
Software Productivity Research, Inc.

The construction of large software systems is one of the most hazardous activities of the business world.
The failure or cancellation rate of large software systems is over 20 percent. Of the large systems that are
completed, about two thirds experience schedule delays and cost overruns that may approach 100 per-
cent. About the same number are plagued by low reliability and quality problems in the first year of
deployment. Yet, some large systems are finished early, meet their budgets, and have few if any quality
problems. How do successful projects differ from projects that fail? Better project management and better
quality control are the most important differences between success and failure in the software world.

Copyright 1997-1998 by Capers Jones, chairman,
SPR, Inc. All Rights Reserved.



14 CROSSTALK The Journal of Defense Software Engineering July 1998

necessary for successful completion.
Configuration control and change man-
agement also are mandatory for this size
plateau.

100,000 Function Points
(12,500,000 C Statements)
Applications that approach 100,000
function points in size are among the
most troubling constructs of the 20th
century. This is roughly the size range of
Microsoft’s Windows 95 product and
also IBM’s MVS operating system. This
is also the size range of major military
systems.

Software development schedules for
systems of this size are usually from five
to more than eight years, although the
initial development plans tend to assume
36 months or less. Development teams
number in the hundreds, often in multi-
ple locations that may even be in differ-
ent countries. Communication problems
are rampant. Paperwork and defect re-
moval operations will absorb the bulk of
development costs. Formal configuration
control and change management are
mandatory and expensive for this size
plateau.

Using these six size ranges, Table 1
shows the approximate frequency of
various kinds of outcomes, ranging from
finishing early to total cancellation.
Table 1 is taken from Patterns of Software
Systems Failure and Success (International
Thomson Computer Press, 1996).

As can easily be seen from Table 1,
small software projects are successful in
the majority of instances, but the risks
and hazards of cancellation or major
delays rise quite rapidly as the overall
application size goes up. Indeed, the

development of large applications in
excess of 10,000 function points is one
of the most hazardous and risky business
undertakings of the modern world.

Software Successes and
Disasters Within Six
Subindustries
There are six major subindustries within
the software community that tend to
follow somewhat different practices and
even use different tools and program-
ming languages. In terms of their ability
to successfully build large software appli-
cations, these six subindustries in order
of rank are
• Systems software.
• Outsource vendors.
• Commercial software.
• Military software.
• Management information software.
• End-user software.

It is interesting to consider why there
are variances among these industries in
the ability to complete large software
projects. These six categories are the
most common types of software devel-
opment projects in North America,
South America, Europe, Africa, India,
the Middle East, and the Pacific Rim.

Systems Software
This category refers to applications that
control physical devices such as operat-
ing systems, navigation and flight con-
trol, telecommunication systems, process
control systems, automotive fuel injec-
tion, medical instruments, and the like.
The systems software community is
concerned with software that operates
large and complex physical devices. If
quality is not excellent, then the devices

may fail during use; therefore, the sys-
tems software community has learned
the hard way that careful quality control
is on the critical path. The systems soft-
ware community, overall, has the best
track record for building large software
applications. This community also has
the best quality control and the best
suites of quality control tools.

Outsource Vendors
These are companies such as Andersen
Consulting, Computer Sciences Corpo-
ration, Electronic Data Systems, IBM’s
Integrated Systems Solutions, and a
number of others. These companies
build software under contract for their
clients. As a class, the outsource vendors
are often better equipped and better
trained than the clients they serve. This
is not always true, but if it were not true,
fairly often, the outsource business
would fail. The outsource community
often has highly sophisticated project
management and quality control tool
suites available, significant amounts of
reusable material, and highly trained
personnel.

Military Software
These are applications constrained to
follow various military standards such
as the older DOD-STD-2167A stan-
dard or the newer MIL-STD-498.
Military applications that control weap-
ons systems tend to resemble civilian
systems software projects in terms of
the emphasis on careful planning and
quality control.

The military and defense community
is not in reality bad at building large
systems, but there is a major problem in
this domain. Military standards are so
complex and baroque that the produc-
tivity of defense applications is lower
than any other software subindustry.
The reason for low productivity has
nothing to do with coding or technical
work. Military standards trigger such
enormous volumes of paperwork that
there are roughly 400 English words
created for every Ada statement on mili-
tary software projects. The volume of
paperwork on military software projects
is almost three times that of comparable
civilian projects of the same size.

Table 1. Software project outcomes by size of project.

Project Management

PROBABILITY OF SELECTED OUTCOMES

Early On Time Delayed Canceled Sum
1 FP 14.68% 83.16% 1.92% 0.25% 100.00%
10 FP 11.08% 81.25% 5.67% 2.00% 100.00%
100 FP 6.06% 74.77% 11.83% 7.33% 100.00%
1,000 FP 1.24% 60.76% 17.67% 20.33% 100.00%
10,000 FP 0.14% 28.03% 23.83% 48.00% 100.00%
100,000 FP 0.00% 13.67% 21.33% 65.00% 100.00%

Average 5.53% 56.94% 13.71% 23.82% 100.00%



CROSSTALK The Journal of Defense Software Engineering 15July 1998

Commercial Software
This refers to the high-volume shrink-
wrapped packages by companies such as
Borland, Computer Associates, and
Microsoft. Until recently, this subindus-
try did not build many large applica-
tions, so they have had some catching up
to do. As the size of personal computer
software packages approaches the size of
mainframe software packages, the com-
mercial vendors have had to increase
their project management tools and
methods, strengthen quality control, and
in general, imitate the successful pattern
of the systems software domain.

Management Information Systems
(MIS)
This refers to the internal applications
companies build for their own use: ac-
counting systems, payroll systems, insur-
ance claims handling, banking and fi-
nancial systems, etc. The MIS
community does not have a particularly
good track record when it comes to large
systems. Often, the MIS community lags
in quality control and testing technolo-
gies compared to the other communities.
However, project management tools for
MIS companies are now increasing in
number and capability.

End-User Software
This refers to applications built pri-
vately by people for their own use,
which in the context of this article
means applications used for business or
professional purposes, not games or
home applications. Although tools such
as Visual Basic, Realizer, spreadsheets,
and SAS have expanded the capabilities
of the end-user community, there is still
a low upper limit to the sizes of applica-

tions that end users can construct.
About 100 function points is the practi-
cal upper limit and 1,000 function
points is the current maximum size of
end-user applications.

Probabilities of On-Time
Software Delivery,
Cancellations, or Delays
The first summary topic of interest is
the probability that software projects
will be finished on time, using the ini-
tial schedule estimate derived during
requirements as the basis of the com-
parison. Table 2 shows the on-time
rates but needs some explanation first.
There is an anomaly in the data because
there are no end-user applications larger
than 1,000 function points; therefore,
the 0 percent values in the end-user
column are excluded from the average
values. Also, some projects finish early,
but these are included in the on-time
percentages. The probability of an early
finish for 10,000 function points or
larger is approximately 0 percent.

As can be seen, small software
projects are comparatively well con-
trolled within all six subindustries. As
the overall size ranges grow larger, delays

and cancellations become much more
common and also more severe. On the
whole, the systems software community
and the outsource community have the
best results with systems in the 10,000
to 100,000 function point range; the
military domain comes in third place.

Probability of Termination
The next topic of interest is the prob-
ability that a project will be terminated
prior to completion. This is among the
most severe risks we face in software—
only termination with accompanying
litigation is more disastrous. Table 3
shows the probabilities of software
project terminations for the various
subindustries.

To illustrate our failures on an intui-
tive level, consider the following anal-
ogy: If building construction had the
same ratio of cancellations as software,
more than half the office buildings in
the world larger than 30 stories tall
would be abandoned before completion.
The average height of buildings in New
York City would be only three stories,
and there would be no skyscrapers.

None of the six domains have fully
mastered the ability to construct large
software systems without a significant
risk of termination or cancellation.
However, the systems software commu-
nity and the outsource community have
the best track record for large systems,
with the military software community
coming in third. The information sys-
tems community fails repeatedly for
large systems. The commercial software
world is not particularly good at the
large system plateau—though it is get-
ting better—and end users cannot do
large systems.

Table 2. Probability of on-time software delivery in six subindustries.

Systems Military MIS Outsource Comm. End-User Average
Software Software Software Software Software Software

1 FP 99.00% 98.00% 98.00% 98.00% 99.00% 95.00% 97.83%
10 FP 96.00% 93.00% 95.00% 97.00% 98.00% 75.00% 92.33%
100 FP 88.00% 84.00% 86.00% 88.00% 89.00% 50.00% 80.83%
1,000 FP 75.00% 65.00% 68.00% 74.00% 75.00% 5.00% 60.33%
10,000 FP 54.00% 38.00% 30.00% 47.00% 35.00% 0.00% 40.80%
100,000 FP 28.00% 15.00% 5.00% 24.00% 10.00% 0.00% 18.40%

Average 73.33% 65.50% 63.67% 71.33% 67.67% 37.50% 65.09%

Systems Military MIS Outsource Comm. End-User Average
Software Software Software Software Software Software

1 FP 0.10% 0.10% 0.10% 0.10% 0.10% 1.00% 0.25%
10 FP 1.00% 2.00% 1.00% 1.00% 2.00% 5.00% 2.00%
100 FP 5.00% 7.00% 6.00% 6.00% 5.00% 15.00% 7.33%
1,000 FP 12.00% 15.00% 17.00% 14.00% 9.00% 65.00% 22.00%
10,000 FP 25.00% 33.00% 45.00% 40.00% 45.00% 100.00% 48.00%
100,000 FP 40.00% 55.00% 80.00% 45.00% 70.00% 100.00% 65.00%

Average 13.85% 18.68% 24.85% 17.68% 21.85% 47.67% 24.10%

Table 3. Probability of software project termination in six subindustries.

Project Management Tools and Software Failures and Successes



16 CROSSTALK The Journal of Defense Software Engineering July 1998

Probability of Schedule Overrun
The next topic of interest is the prob-
ability that a software project will even-
tually be finished but will run later than
anticipated by a significant amount (a 5
percent slip is noticeable, more than 10
percent is painfully costly, and a 50
percent slip is a catastrophe). The initial
estimate developed during requirements
is the starting point. Table 4 shows
slippage probabilities for the six subin-
dustries.

Here, too, the low end of the soft-
ware size spectrum is generally trouble-
free and under full control. As the size
range gets larger, delays and cancella-
tions become much more common. A
contributing factor to both delays and
cancellations also grows with size: The
probability of “creeping user require-
ments.” The average growth of un-
planned, unanticipated requirements is
about 1 percent to 2 percent per month
during the design and coding phases of
typical software projects, although the
upper range of requirements creep can
exceed 10 percent in a single month.

Any of the six domains can build
small software projects with a good
probability of success. At the upper
end, no domain is fully capable. How-
ever, the systems software world, the
large outsource contractors, and the
military domains are the most experi-
enced with large applications and there-
fore have somewhat better probabilities
of succeeding.

Project Management Tools
Used on Successful Software
Projects
One of the newer uses of the function
point metric is to evaluate the complete-
ness of various kinds of software tool

suites. This approach can clearly reveal
some of the critical differences between
successful software projects, average
projects, and total failures.

It is obvious to consultants who
spend much time with large systems and
large corporations that manual methods
are not adequate for cost estimation,
schedule planning, or quality prediction.
The best-in-class organizations may have
more than 10 times the quality tool
capacities and more than 30 times the
project management tool capacities than
the organizations that fail with software.

Interestingly, there may be little if
any difference in the capacities of soft-
ware engineering tool suites. Both suc-
cessful and unsuccessful companies tend
to have in the range of 30,000 to per-
haps 50,000 function points of software
engineering and development tools. The
difference between companies that suc-
ceed and those that do not is that the
former employ effective project manage-
ment tool suites whereas the latter gen-
erally do not. Table 5 identifies the typi-
cal patterns of project management tools
noted on leading, average, and lagging
software projects.

As shown, the lagging projects tend
to be essentially manual for most project
management functions. The leading
projects deploy a notable quantity of
quality control and project management
automation. Leading projects tend to use
more than 16 times the project manage-
ment tool capacities of lagging projects
in terms of function points. In terms of
numbers of project management tools
deployed, there is about a 6-to-1 ratio
between the leading and lagging
projects.

The presence of a suite of project
management tools is not, by itself, the

main differentiating factor between
successful and unsuccessful software
projects. The primary reason for the
differences noted between lagging and
leading projects is that the project man-
agers who use a full suite of management
tools are usually better trained and have
a firmer grasp of the intricacies of soft-
ware development than the managers
who lack adequate management tools.

Bringing a large software project to a
successful conclusion is an extremely
difficult task filled with complexity. The
managers who can deal with this com-
plexity recognize that some of the cost
and resource scheduling calculations
exceed the ability of manual methods.
Managers on failing projects, on the
other hand, tend to have a naive belief
that project planning and estimating are
simple enough to be done using rough
rules of thumb and manual methods.

Summary and Conclusions
Software is intangible, but the schedules
and cost estimates for software can be
highly tangible. Software projects are still
subject to the basic laws of manufactur-
ing, and software needs to be placed on a

Systems Military MIS Outsource Comm. End-User Average
Software Software Software Software Software Software

1 FP 0.90% 1.90% 1.90% 1.90% 0.90% 4.00% 1.92%
10 FP 3.00% 5.00% 4.00% 2.00% 0.00% 20.00% 5.67%
100 FP 7.00% 9.00% 8.00% 6.00% 6.00% 35.00% 11.83%
1,000 FP 13.00% 20.00% 15.00% 12.00% 16.00% 30.00% 17.67%
10,000 FP 21.00% 29.00% 25.00% 13.00% 20.00% 0.00% 11.20%
100,000 FP 32.00% 30.00% 15.00% 31.00% 20.00% 0.00% 16.60%

Average 12.82% 15.82% 11.48% 10.98% 10.48% 14.83% 10.81%

Table 4. Probability of schedule slip by more than 25 percent in six subindustries.

Table 5. Numbers and size ranges of project
management tools (size data expressed in terms of
function point metrics).

Project Management Lagging Average Leading
Project planning 1,000 1,250 3,000
Project cost estimating 3,000
Statistical analysis 3,000
Methodology management 750 3,000
Year 2000 analysis 2,000
Quality estimation 2,000
Assessment support 500 2,000
Project measurement 1,750
Portfolio analysis 1,500
Risk analysis 1,500
Resource tracking 300 750 1,500
Value analysis 350 1,250
Cost variance reporting 500 1,000
Personnel support 500 500 750
Milestone tracking 250 750
Budget support 250 750
Function point analysis 250 750
Backfiring: LOC to FP 750

Function point subtotal 1,800 5,350 30,250
Number of tools 3 10 18

Project Management



CROSSTALK The Journal of Defense Software Engineering 17July 1998

firm engineering basis by the end of the
20th century.

Project managers are the primary key
to software project success and failures.
To a large degree, the sophistication or
lack of sophistication of the project
management tool suite will determine
whether software projects will succeed,
experience major cost and schedule
overruns, or fail. ◆

About the Author
Capers Jones is an
international consult-
ant on software man-
agement topics and
chairman of Software
Productivity Research,
Inc. (SPR) in Burling-

ton, Mass. He began his software career
as a programmer in the Office of the
Surgeon General, Washington, D.C.
Prior to becoming chairman of SPR, he
worked at the Crane Company, IBM, and
was assistant director of programming
technology at ITT Corporation’s Pro-
gramming Technology Center in Strat-
ford, Conn.

Software Productivity Research, Inc.
1 New England Executive Park
Burlington, MA 01803-5005
Voice: 781-273-0140
Fax: 781-273-5176
E-mail: capers@spr.com

Suggested Readings
1. Brown, Norm, ed., The Program

Manager’s Guide to Software Acquisition
Best Practices, Version 1.0, U.S. Depart-
ment of Defense, Washington, D.C.,
July 1995.

2. Charette, Robert N., Software Engineer-
ing Risk Analysis and Management,
McGraw-Hill, New York, 1989.

3. Charette, Robert N., Application Strate-
gies for Risk Analysis, McGraw-Hill, New
York, 1990.

4. DeMarco, Tom, Controlling Software
Projects, Yourdon Press, New York, 1982.

5. DeMarco, Tom, Why Does Software Cost
So Much?, Dorset House, New York,
1995.

6. Department of the Air Force, Guidelines
for Successful Acquisition and Management
of Software-Intensive Systems, Vols. 1 and

2, Software Technology Support Center,
Hill Air Force Base, Utah, 1994.

7. Dreger, Brian, Function Point Analysis,
Prentice-Hall, Englewood Cliffs, N.J.,
1989.

8. Grady, Robert B., Practical Software
Metrics for Project Management and
Process Improvement, Prentice-Hall,
Englewood Cliffs, N.J., 1992.

9. Grady, Robert B. and Deborah L.
Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice-Hall,
Englewood Cliffs, N.J., 1987.

10. IFPUG Counting Practices Manual,
Release 4, International Function Point
Users Group, Westerville, Ohio, April
1995.

11. Jones, Capers, Applied Software Measure-
ment, McGraw-Hill, New York, 2d ed.,
1996.

12. Jones, Capers, Critical Problems in Soft-
ware Measurement, Information Systems
Management Group, 1993.

13. Jones, Capers, Software Productivity and
Quality Today – The Worldwide Perspec-
tive, Information Systems Management
Group, 1993.

14. Jones, Capers, Assessment and Control of
Software Risks, Prentice-Hall, 1994.

15. Jones, Capers, New Directions in Software
Management, Information Systems
Management Group.

16. Jones, Capers, Patterns of Software System
Failure and Success, International
Thomson Computer Press, Boston,
Mass., December 1995.

17. Jones, Capers, Software Quality – Analysis
and Guidelines for Success, International
Thomson Computer Press, Boston,
Mass., 1997.

18. Jones, Capers, The Economics of Object-
Oriented Software, Software Productivity
Research, Burlington, Mass., April 1997.

19. Jones, Capers, The Year 2000 Software
Problem – Quantifying the Costs and
Assessing the Consequences, Addison-
Wesley, Reading, Mass., 1998.

20. Kan, Stephen H., Metrics and Models in
Software Quality Engineering, Addison-
Wesley, Reading, Mass.

21. Howard, Alan, ed., Software Metrics and
Project Management Tools, Applied Com-
puter Research, Phoenix, Ariz., 1997.

22. Mertes, Karen R., Calibration of the
CHECKPOINT Model to the Space and
Missile Systems Center Software Database,

thesis, AFIT/GCA/LAS/96S-11, Air
Force Institute of Technology, Wright-
Patterson Air Force Base, Ohio, Septem-
ber 1996.

23. Multiple authors, Rethinking the Software
Process, (CD-ROM), Miller-Freeman,
Lawrence, Kan., 1996. (This is a new
CD-ROM book collection jointly pro-
duced by the book publisher, Prentice-
Hall and the journal publisher, Miller-
Freeman. This CD-ROM disk contains
the full text and illustrations of five
Prentice-Hall books: Assessment and
Control of Software Risks by Capers Jones,
Controlling Software Projects by Tom
DeMarco, Function Point Analysis by
Brian Dreger, Measures for Excellence by
Larry Putnam and Ware Myers, and
Object-Oriented Software Metrics by
Mark Lorenz and Jeff Kidd.)

24. Putnam, Lawrence H., Measures for
Excellence – Reliable Software On Time,
Within Budget, Yourdon Press - Prentice-
Hall, Englewood Cliffs, N.J., 1992.

25. Putnam, Lawrence H. and Ware Myers,
Industrial Strength Software – Effective
Management Using Measurement, IEEE
Press, Los Alamitos, Calif., 1997.

26. Rubin, Howard, Software Benchmark
Studies for 1997, Howard Rubin Associ-
ates, Pound Ridge, N.Y., 1997.

27. Stukes, Sherry, Jason Deshoretz, Henry
Apgar, and Ilona Macias, Air Force Cost
Analysis Agency Software Estimating Model
Analysis, TR-9545/008-2, Contract
F04701-95-D-0003, Task 008, Manage-
ment Consulting & Research, Inc.,
Thousand Oaks, Calif., Sept. 30, 1996.

28. Symons, Charles R., Software Sizing and
Estimating – Mk II FPA (Function Point
Analysis), John Wiley & Sons, Chiches-
ter, England, 1991.

29. Thayer, Richard H., ed., Software Engi-
neering and Project Management, IEEE
Press, Los Alamitos, Calif., 1988.

30. Umbaugh, Robert E., ed., Handbook of
IS Management, 4th ed., Auerbach
Publications, Boston, Mass., 1995.

31. Zells, Lois, Managing Software Projects –
Selecting and Using PC-Based Project
Management Systems, QED Information
Sciences, Wellesley, Mass.

Project Management Tools and Software Failures and Successes


